Hypothesis Testing www.FairlyNerdy.com					
Type Of Test	Purpose	Example	Equation	Comment	Excel Function
Z Test	Test if the average of a single population is equal to a target value	Do babies born at this hospital weigh more than the city average	$Z = \frac{\bar{\mathbf{x}} - \mathbf{u}_0}{\frac{\sigma}{\sqrt{n}}}$	Z test does not need df σ = population standard deviation	=Ztest(array,x,sigma)
1 Sample T-Test	Test if the average of a single population is equal to a target value	Is the average height of male college students greater than 6.0 feet?	$t = \frac{\bar{x} - u_0}{\frac{s}{\sqrt{n}}}$ $df = n - 1$	s = sample standard deviation	no built in equation use =STDEVA for standard deviation use =AVERAGE for mean use =T.DIST.RT to get 1 tailed confidence use =T.DIST.2T to get 2 tailed confidence
Paired T-Test	differences between paired or dependent samples is	Weigh a set of people. Put them on a diet plan. Weigh them after. Is the average weight loss significant enough to conclude the diet works?	$t = \frac{\bar{d}}{\sqrt{\frac{s^2}{n}}}$ $df = n - 1$	d bar = average difference between samples s = sample deviation of the difference n = count of one set of the pairs (don't double count)	=TTEST(Array1,Array2,*,1) * -> 1 for 1 tailed, 2 for 2 tailed
2 Sample T-Test Equal Variance	Test if the difference between the averages of two independent populations is equal to a target value	Do cats eat more of type A food than type B food		n1, n2 = count of sample 1, 2 $- \bar{x}_{2})$ $\frac{1}{2} - \frac{1}{2}s_{2}^{2} + \sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}$	=TTEST(Array1,Array2,*,2)
2 Sample T-Test Unequal Variance	Test if the difference between the averages of two independent populations is equal to a target value	Is the average speed of cyclists during rush hour greater than the average speed of drivers	$t = \frac{(\bar{\mathbf{x}}_1 - \bar{\mathbf{x}}_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$	$df = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{\left(\frac{s_1^2}{n_1}\right)^2}{n_1 - 1} + \frac{\left(\frac{s_2^2}{n_2}\right)^2}{n_2 - 1}}$	=TTEST(Array1,Array2,*,3)
Visit www.FairlyNerdy.com for more FREE Engineering Cheat Sheets Print This, Save It, Or Share With A Friend!					