Linear Regression

With linear regression, you are trying to reduce a set of data into a line. The equation for a line is

The first thing to calculate is the slope of the regression line. That value is the correlation of the two data sets, multiplied by the ratio of their standard deviations. Note that those are sample standard deviations, not population

Correlation shows how much two sets of data change together. Correlation is always between 1 and 1 , and is unit-less. Correlation is frequently around the average x, average y, but if you want to force the line through a specific point, you can use that point instead of average x, y in all the

$$
s_{x}=\sqrt{\frac{\sum(x-\bar{x})^{2}}{(n-1)}} \quad s_{y}=\sqrt{\frac{\sum(y-\bar{y})^{2}}{(n-1)}} \leftarrow \begin{aligned}
& \text { The sample standard deviation of } \mathrm{x} \\
& \text { and y measure how spread out the } \mathrm{x}
\end{aligned}
$$

Once you have done those calculations you have the slope. With the slope and a point the line goes through you can calculate the intercept. If you used the average x, y before use it here again. Otherwise use the same x, y that you specified before

Visit www.FairlyNerdy.com for more FREE Engineering Cheat Sheets Print This, Save It, Or Share With A Friend!

