
Machine Learning With Boosting 
 
 

A Beginner’s Guide 

 

By Scott Hartshorn 

 

Sample Book – First 10% Of Content 

  



What Is In This Book 
The goal of this book is to provide you with a working understanding of how the machine learning 

algorithm “Gradient Boosted Trees” works. Gradient Boosted Trees, which is one of the most commonly 

used types of the more general “Boosting” algorithm is a type of supervised machine learning.  What 

that means is that we will initially pass the algorithm a set of data with a bunch of independent 

variables, plus the solution that we care about.  We will use the known solution and the known 

independent variables to develop a method of using those variables to derive that solution (or at least 

get as close as we can).   Later on, after we train the algorithm, we will use the method we derived to 

calculate solutions for unknown results from different independent variables. 

This is an example driven book, rather than a theory driven book. That means we will be showing the 

actual algorithms within the code that executes gradient boosted trees, instead of showing the high 

level equations about which loss functions are being optimized.  

The most common explanation for boosting is “Boosting is a collection of weak learners combined to 

form a strong learner”.   The goal of this book is to provide a more tangible and intuitive explanation 

than that.  This book starts with some analogies that provide a rough framework of how boosting works. 

And then goes into a step by step explanation of gradient boosted trees.  It turns out that the actual 

boosting algorithms are a straightforward application of algebra, except for the decision trees that are 

one part of the process for most boosting algorithms.  (The decision trees are reasonably straight 

forward, but are not algebra.) 

The examples that will be shown will focus on two types of problems.  One is a regression analysis, 

where we are trying to predict a real value given a set of data.  One real life example of regression is 

Zillow predicting a house’s value based on publicly available data.   The example regression analysis we 

will show isn’t that complicated.  We will try to predict the value of a sine wave, shown below as the 

black dots 
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And we will show how that single blue line, which results from a decision tree, can be improved using 

boosting to match the sine wave values more closely, as shown below 



 

Obviously this sine wave isn’t as complicated as Zillow’s house price prediction, but it turns out that 

once we understand how the boosting algorithm works, it is simple to increase the complexity with 

more data or more layers of boosting. 

The other example we will show is a categorization problem.  With categorization we are trying to 

predict discrete results.  I.e. instead of Zillow predicting a house’s value, it could be an investment 

company trying to determine should they invest in this asset, yes or no.  In that example we will show 

how we can the take categorical data shown below as either red triangles or blue squares 

 



 

And make predictions about the values of the entire design space, shown below 



 

Once we understand how to group two different categories using boosting, we will extend that to how 

to work with any number of categories. 

 

Get The Data And Examples Used In This Book 

The algebra of the boosting algorithms can be duplicated in Excel, and I’ve included an Excel file that 

does just that in the free downloadable bonus material here http://www.fairlynerdy.com/boosting-

examples  That bonus material also includes all of the Python code used to generate the examples 

shown. 

If you want to help us produce more material like this, then please leave a positive review for this book 

on Amazon. It really does make a difference! 

If you spot any errors in this book, think of topics that we should include, or have any suggestions for 

future books then I would love to hear from you.  Please email me at  

http://www.fairlynerdy.com/boosting-examples
http://www.fairlynerdy.com/boosting-examples
https://www.amazon.com/dp/B074S14FPD


 

~ Scott Hartshorn  



Your Free Gift 

As a way of saying thank you for your purchase, I’m offering this free cheat sheet on Decision Trees 

that’s exclusive to my readers. 

Decision trees form the heart of Gradient Boosted Trees, so it is important to understand how they 

work.  They are also a useful machine learning technique in their own right.   This is a 2 page PDF 

document that I encourage you to print, save, and share.  You can download it by going here 

 

http://www.fairlynerdy.com/decision-trees-cheat-sheet/   

http://www.fairlynerdy.com/decision-trees-cheat-sheet/
http://www.fairlynerdy.com/decision-trees-cheat-sheet/
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A Quick Example Of Boosting 

There are several different boosting algorithms that exist.  This book focuses on one of them, gradient 

boosted trees.    The exact math differs between different boosting algorithms, but they are all 

characterized by two key features. 

1. Multiple iterations  

2. Each subsequent iteration focuses on the parts of the problem that previous iterations got 

wrong. 

A real life example of a boosting algorithm in progress might be a high school band teacher teaching a 

class of 20 students.   This specific band teacher wants to make the average quality of his class as good 

as possible.   So what does he do? 

On day 1 he knows nothing about the quality of the musicians that he is teaching, so he simply teaches a 

standard class.   After that, he knows exactly how well each student is doing.  So he then tailors his 

instruction to focus on whichever students he can help the most that day.  Typically that will be the 

worst students in the class.    After all, his goal isn’t to make his best students perfect, he is trying to 

bring up the average.   It is usually easier to turn Bad into Acceptable than it is to turn Good into 

Exceptional.    So this music teacher will tend to ignore the advanced students and spend more time 

with the worst students. 

How is this an example of boosting put into practice?   Simple, the iterations take place each subsequent 

day at each new class.  And the requirement that the algorithm focuses on fixing the errors from 

previous iterations is satisfied since the teacher is finding the students with the largest amount of error 

and working to improve them. 

  



Why Do People Care About Boosting? 
Machine learning is a field that has an increasing number of applications, large companies like Google 

and Amazon are using it for their personal assistant products (i.e. Alexa), and it will likely revolutionize a 

number of different fields, such as when autonomous cars become available.  That is machine learning 

on a grand scale done with large dedicated teams, and is more advanced than we will cover in this book.   

On an individual’s scale, machine learning has a number of interesting applications as well.  One of the 

easiest places to see them applied is on the machine learning competition site Kaggle. 

On Kaggle, individuals or small teams compete to take different sets of data and extract the most 

information possible out of them using whatever techniques they choose.  The winners frequently 

receive cash, as well as bragging rights.  But the important point here is not the competitors, but the 

companies who are generating the data sets.   They have real problems where a better analysis of data 

can open up new business opportunities, and they are willing to give away cash prizes (typically in the 

tens of thousands of dollars, sometimes more) to get better answers. 

It is difficult to know which machine learning algorithm will work best for any given problem.  However 

in recent problems people have found that boosting (especially XGBoost which uses gradient boosted 

trees along with other improvements) has done very well.  Here are some competitions that have been 

won using boosting, or boosting in conjunction with other techniques 

 Liberty Mutual Property Inspection – Use some property information to predict the hazards in a 

home, for insurance purposes. 

 Caterpillar Tube Pricing – Attempt to predict how much a supplier will charge for different 

orders of metal tubing. 

 Avito Duplicate Ads Detection – Identify duplicate ads from an online marketplace so that they 

can be removed. 

 Facebook Robot Detection – An online auction site (likely a penny auction site) has been flooded 

with robot bidders which is causing the real customers to leave the site.  Can you identify the 

robots? 

 Otto Product Classification – Use a set of provided features to figure out what category different 

products should be grouped into. 

The type of boosting shown in this book, Gradient Boosted Trees, uses multiple decision trees (which are 

a series of if-then questions that split the data into two different branches, shown in detail later) 

sequentially in order to improve on one of the main limitations that decision trees have, which is 

overfitting. 

  

http://blog.kaggle.com/2015/09/28/liberty-mutual-property-inspection-winners-interview-qingchen-wang/
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http://blog.kaggle.com/2015/06/09/otto-product-classification-winners-interview-2nd-place-alexander-guschin/


An Analogy of How Boosting Works 

Boosting, when applied to computer science, has a more formal definition than the music teacher 

analogy listed above.   One of the most common descriptions of boosted learning is that a group of 

“weak learners” can be combined to form a “strong learner”.   

Applying that description to the music teacher analogy would be that a group of daily instructions (the 

weak learners) can be combined to produce a good quality course (the strong learner) 

The combination of weak learners resulting in a strong learner description is accurate, and it does give 

some information. However, it leaves out some important points, such as 

 What is a weak learner? 

 How are they combined? 

 Are some weak learners better than others? 

The following analogies are intended to build your intuition on those points above before getting into 

the actual math of how boosting algorithms work. 

 

What Is A Good Weak Learner? 

A weak learner is any machine learning algorithm that gives better accuracy than simply guessing.  For 

instance, if you are trying to classify animals at a zoo, you might have an algorithm that can correctly 

identify zebras most of the time, but it simply guesses for any other animal. That algorithm would be a 

weak learner because it is better than guessing. 

If you had an algorithm that identified every animal as a zebra, then that probably is not better than 

guessing and so it would not be a weak learner. 

For boosting problems, the best kinds of weak learners are ones that are very accurate, even if it is only 

over a limited scope of the problem.    For instance, the algorithm that correctly identifies zebras would 

be good. It allows you to confidently identify at least most of the zebras, allowing other weak learners to 

focus on the remaining animals. 

A weak learner that would not be as useful is one that simply counted the number of legs an animal has.  

If the animal has four legs it could be a zebra, horse, alligator, or panda.  If it has zero legs, it could be a 

fish, snake, or a worm.  That kind of identification helps some, but it doesn’t really narrow the scope of 

the problem that much for future learners. 

 

How Are Weak Learners Combined? 

Boosting algorithms typically work by solving subsections of the problem, by peeling them away so 

future boosting iterations can solve the remaining sections. 

Here is another analogy.  Imagine you are hiring people to build your house, and you have 10 different 

big jobs that need to be done.   A great way of doing it would be to get someone who is really good at 



foundations to build the foundation. Then hire a very good carpenter to focus on the framing.  Then hire 

a great roofer and plumber to focus on their sections of the house.  At each stage, a small subsection of 

the project is getting completely solved. 

The roofer may be completely useless at laying foundations, but as long as you use him at the right time 

you will be in good shape. 

The contrast to that method would be to hire 10 people who are all decent at most things, but not great 

at anything.  None of them can build you a good foundation, and if you start with one, the next one will 

have to come in and fix some problems with it, while at the same time doing a shoddy job framing.  The 

third person will have to come in and make corrections to the errors that the first two left behind.  You 

might get a good product at the end, but more likely you will have adequate results that still have errors 

in them. 

The takeaway is that weak learners are best combined in a way that allows each one to solve a limited 

section of the problem.   Any machine learning routine can be used as a weak learner.  Neural nets, 

support vector machines or any other would work, but the most commonly used weak learner is the 

decision tree. 

  



How Boosting Really Works – Skipping Over The Details 

With boosting, and with many other types of machine learning, there are two stages to using the 

algorithm.  The first stage is to train the algorithm on data that you know the answer to.  You train the 

model using data that has some “features” that you think will be useful in getting your desired results, 

as well as a final answer that you also know.  This is known as “fitting” the model or the classifier using 

training data.  By fitting the boosting model, it learns how to use the features of the data in order to 

create groups of data points with similar final answers.  It also learns how to adjust the results within 

each group in order to get the known final answer. 

The second stage is to use that fitted model on a set of data that has the same features as the training 

data, except that you don’t know the final answer.  The machine learning algorithm will then operate on 

the unknown data the same way that it learned to based on the known data, and draw conclusions from 

that.  The theory is that if it groups the second set of data using the same method as it did for the first 

set of data, and then adjusts the values in the second set of groups using the method developed by 

looking at the final answers in the first set of groups, that the algorithm can determine good estimated 

values for the second set of data. 

The first stage, fitting the model, is somewhat more complicated than the second stage of predicting 

with a fit model.  At a high level, the process we use to fit the boosting model is to start with the training 

data and make an initial estimate of a value for all the data points.  Then we calculate how much error 

was in that initial estimate.  (Which is only possible because we know the actual final value of the 

training data). Next, we attempt to group data points together, using their features to generate the 

groups, with the objective of making groups that have a similar amount of error within each group.  

Then, for each group, we calculate a single value and adjust all the data points in the group by that 

value.  This creates a new value for every data point. That completes a boosting iteration.  We could 

then be done with the training of the boosting algorithm, or we could use the new value to calculate 

new errors and go through the whole cycle repeatedly until the results stop improving. 

In the simplest terms, the cycle looks like this 

 



Splitting The Groups 

The most computationally expensive part of gradient boosting is determining the best way to group the 

data.  The process used to group the data is regression decision trees. 

The images below show an example of how the decision tree split the data into groups.  What happens 

is that data starts at the head node (the top) and gets grouped according to how much error remains in 

each data point, based on the features that can be used to split the data up.  The resulting groups are 

shown below as 1, 2, 3, 4.  (Real problems could have a greater or fewer number of groups) 

 

Each split occurs on a single feature at a specific value of that feature.  Subsequent splits could use 

different features or different values of the same feature.  At any given split, a data point will take one 

branch or the other based on the value it has for the feature being operated on.  As a result, the splits 

result in multiple groups. 

Each of those groups will calculate a value that will get added or subtracted from all of the data points 

that fall within that group.  That is shown in the image below 



 

This value is important. It is, in fact, the whole point of making these groups.  That value is a real 

number that will get added (or subtracted) from the current value of every member of the group, which 

updates the current value to a new value. 

The change value will be calculated for each group in order to give the most improvement possible to 

the members of that group, but it will frequently be the case that some data points improve while 

others get worse on any given boosting cycle. 

All the data points start with the same initial estimate value, but after the first boosting cycle they will 

have different values depending on the amount of change imposed by the group they are in.  Since 

different points have different estimated values, they will have different error relative to their true 

values.  As a result, in subsequent boosting cycles any given data point will not necessarily end up 

grouped together with the same points as it was in previous cycles.  This means that, given enough 

boosting cycles, each data point in the training set can be improved to very closely match its true value. 

Multiple sequential boosting cycles might look something like this 

 



Where every data point in the training set follows its own path through each tree into the groups and 

changes its value depending on what group it lands in.  Each tree will end up with groups using with 

different features, and the groups will have different amounts of change applied to their values.  

Different trees could end up with different numbers of groups. 

The final results from a trained set of gradient boosted trees are the splits that created the groups for 

each tree, and the amount of change that gets applied to each group.  Once the algorithm is trained and 

you have those results, you can take a different set of data, determine which groups each data point 

would fall into for each tree, and apply the appropriate change for each data point in the new set of 

data. 

 

That’s It For The Free Sample 
Per the licensing agreement with Amazon, I can only provide 10% of the book as a free sample, and this 

has reached the end of the 10%.  The remaining 90% dives more deeply into boosting examples, and 

shows exactly how regression and classification works with gradient boosting.   

 

The full book can be purchased here on Amazon  “Machine Learning With Boosting” for less than $3 (or 

the equivalent in other currencies.) 

 

I gave some thought onto which 10% of the book to include as this free sample, and eventually decided 

to just keep the first 10%, as opposed to trying to select the section on a specific topic.  The reason is 

that the analogies and general overview provided in the first 10% of the book can be useful by itself, 

even without the detailed technical content.  But any given block of 10% of the detailed technical 

content is not as useful without the framework provided by the introduction. 

 

If you like this book, the other pure machine learning book I have written is  Machine Learning With 

Random Forests And Decision Trees   Random Forests are another type of Machine learning algorithm 

where you combine a bunch of decision trees that were generated in parallel, as opposed to in series 

like we did with boosting.   That book might also be useful to you. 

 

If you have any questions simply write here: 

 

~ Scott Hartshorn  
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